If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+72x+318=0
a = 3; b = 72; c = +318;
Δ = b2-4ac
Δ = 722-4·3·318
Δ = 1368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1368}=\sqrt{36*38}=\sqrt{36}*\sqrt{38}=6\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-6\sqrt{38}}{2*3}=\frac{-72-6\sqrt{38}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+6\sqrt{38}}{2*3}=\frac{-72+6\sqrt{38}}{6} $
| 0.02x-(500/x^2)-1=0 | | 3f-6=3D-2 | | (1/6)d+2/3=1/4(d-2) | | 3(4x-8)=1/5(35x=30) | | x5=1013 | | 2x२-27x+88=0 | | 1/6*d+2/3=1/4*(d-2) | | 2x२-37x+88=0 | | 9/4t=-7/9 | | 2x+5=1x-3 | | 4x2+48=0 | | .6y=-18 | | 6w-15w=81 | | 143.7-r=87 | | 4a-10=2a+12 | | 3/4+4y=3/4 | | -3x^2+15x+17=0 | | 6=9/k | | x(.25)=750 | | -3x^2+10x+18=0 | | 2x-21.1=x+2.9 | | 4(5s-9)=2(10s-12) | | 4/x+2-x/x+2=3 | | 8f+7=7f-400 | | X+3/5-x=-3 | | -2(4n-3=20n-57 | | x=9/5(191.8-273.15)+32 | | 5(2c+7)=3c+30+7c+5 | | 8.4+h=15.2 | | -12a+2=5a+25+6 | | -12a+2=5a+25 | | -1/9(x-27)+1/3(x+3)=17 |